Slimfit
  1. В МИРЕ

Ученые научились синтезировать геномы живых организмов

Ученые научились синтезировать геномы живых организмов
Sakura

Ученые научились синтезировать геномы живых организмов

В середине мая в Nature вышла статья, в которой ученые из Кембриджа описали процесс синтеза de novo и сборки в живом организме самого большого на сегодняшний день генома — кольцевой хромосомы кишечной палочки Escherichia coli. Исследователи не просто создали бактерию с синтетическим геномом, но и изъяли из обращения два кодона, кодирующих аминокислоту серин, получив таким образом организм с сокращенным генетическим кодом. По сравнению с той информационной шумихой, которую создавал Крейг Вентер (пионер исследований генома человека и директор института имени себя) вокруг своих проектов по синтетической геномике (речь идет, в первую очередь, о создании первого организма с синтетическим геномом и бактерии с минимальным геномом), новость о «подмене» хромосомы кишечной палочки прошла практически незаметно.

 

Тем не менее, это важная веха в области синтетической биологии, ведь речь идет о четырех миллионах пар оснований, которые были получены в лаборатории из раствора нуклеотидов и затем попали в живую клетку. Разбираемся, как синтезировать геном в лаборатории, зачем ученые вообще занимаются подобными вещами и что нового произошло в синтетической геномике со времен «первого синтетического живого организма», опубликованного в 2010 году командой Крейга Вентера.

Синтез целых геномов — раздел синтетической биологии, которая ставит своей задачей создание организмов с заданными свойствами при помощи современных методов генной инженерии.

Вообще-то, принципы синтетической биологии давно используются и в области индустриальной микробиологии для создания микробов — сверхпродуцентов ценных молекул, и в экологии (например, для создания биосенсоров), и в других областях биологии. Отличие синтетической биологии скорее в том, что это междисциплинарное направление, объединяющее несколько крупных проектов, таких как создание вычислительных устройств на основе живых систем или создание организмов с дизайнерскими геномами, синтезированными de novo.

Синтез ДНК в лаборатории сам по себе не является сложной задачей — методики, позволяющие построить цепочку с заданной последовательностью нуклеотидов, были разработаны еще в 80-х годах XX века. Однако ситуация в области синтетической геномики с методической точки зрения напоминает ситуацию с секвенированием в начале проекта по расшифровке генома человека — технологии уже есть, но еще крайне непроизводительные. В результате, чтобы синтезировать даже самый короткий геном, придется опираться на схему «маленькие кусочки — кусочки побольше — большие куски — целая молекула».

Наиболее популярный и дешевый амидофосфитный метод синтеза ДНК-цепочек на твердофазном носителе позволяет провести не более 100-200 циклов последовательного присоединения нуклеотидов, причем вероятность ошибочного присоединения с каждым циклом увеличивается. Таким образом, на выходе можно получить короткие одноцепочечные молекулы ДНК (олигонуклеотиды), состоящие максимум из 200 звеньев. 

 
Альтернативой этому методу может стать ферментативный синтез с использованием терминальной дезоксинуклеотидил трансферазы (TdT). Этот фермент работает как ДНК-полимераза, удлиняя цепочку за счет присоединения новых нуклеотидов, но для синтеза ему не нужна матрица. Ферментативный подход может увеличить точность синтеза, но, судя по всему, не длину готового продукта. Пока что максимальная длина цепочки, полученной таким образом, составила 150 нуклеотидов. Кроме того, для коммерческого использования технология пока недоступна. 
Несмотря на ограничение по длине, такая продуктивность синтеза до недавних пор устраивала большинство пользователей. Короткие цепочки ДНК используются во множестве биологических приложений — в качестве затравок для полимеразной цепной реакции, в качестве зондов для детекции последовательностей, подавления экспрессии генов и мутагенеза. Тем не менее, появление синтетической биологии привело к росту конкуренции на рынке синтеза, в результате чего цены заметно упали. Заказать синтез целого гена длиной в несколько сотен или тысяч нуклеотидов теперь может позволить себе большинство исследовательских лабораторий.

Чтобы синтезировать даже единственный ген, на старте придется иметь дело с большим количеством коротких олигонуклеотидов. На этапе дизайна эксперимента последовательность ДНК разбивают так, чтобы последовательности этих олигонуклеотидов перекрывались друг с другом. Дальше олигонуклеотиды смешивают по несколько штук и объединяют при помощи полимеразной цепной реакции. Этот метод тоже был изобретен еще в конце 80-х и так сильно подстегнул развитие молекулярной биологии, что за его разработку вручили Нобелевскую премию

 

В реакции, состоящей из множества циклов последовательного разделения и отжига цепочек друг на друга, используется термостабильная ДНК-полимераза, которая достраивает вторую цепь ДНК на одноцепочечной матрице. В результате короткие перекрывающиеся кусочки можно не только сшить друг с другом, но и многократно копировать.

Далее куски ДНК объединяют в большие фрагменты путем ферментативной сборки, или, что проще, с использованием в качестве «швеи» клетки пекарских дрожжей. За счет усиленной способности к рекомбинации ДНК дрожжи могут объединить друг с другом много перекрывающихся последовательностей. Именно таким способом был собран геном «синтетической микоплазмы», причем дрожжи смогли соединить одновременно 25 кусков ДНК.

Большие фрагменты генома кишечной палочки были собраны таким же образом. Однако для создания промежуточных форм хромосомы пришлось полагаться на рекомбинацию в клетках самой бактерии. Обычно небольшие фрагменты ДНК несложно встроить в бактериальный геном, однако для встройки кусков ДНК размером по 100 тысяч пар оснований пришлось применять метод на основе CRISPR с внесением двуцепочечных разрывов.

 

Источник: hotgeo

Тебе понравилась статья? Следуйте в социальных сетях!

Нецензурные, оскорбительные и прописные комментарии не принимаются.